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COMMENT 

The potential for a homogeneous spheroid in a spheroidal 
coordinate system: I. At an exterior point 

W X Wang 
Space Astronomy Laboratory, University of Florida, 1810 N W  6th Street, Gainesville, FL 
32609, USA 

Received 24 June 1988 

Abstract. The explicit expressions of the external potential for a homogeneous spheroid 
in a rectangular coordinate system have been studied previously by several researchers. 
Presented here are the simplest forms of the potential in existing expressions, as derived 
from the reciprocal of the distance between two points expanded with the Legendre 
functions of the first and second kind in a spheroidal coordinate system. The numerical 
comparison of the potentials in spheroidal and rectangular coordinate systems shows 
exactly their identity. It is now feasible to calculate the gravitational potential for an 
astronomical body having spheroidal shape in its spheroidal coordinate system and to 
determine directly the equipotential surfaces by setting the corresponding spheroidal 
coordinate to a constant. 

1. Introduction 

The external potential for a homogeneous spheroid in a rectangular coordinate system 
was investigated by Kellogg (1929), Hopfner (1933) and MacMillan (1958). The 
expressions proposed by Kellogg are written in the form: 

for prolate spheroid 
6 E  4x2-2r2-f2 s2(2x2-y2)-2f2x2 

U = - [  e f 2  2f s( s2 - f 2)  

6 E  4z2-2 r2+f2  s2(r2 -2z2) - f 2 r 2  
U = - (  e f2  2f sin-l(f/s)+ s2(s*- f 2)W for oblate spheroid 

(1b) 
where E is the mass of the spheroid, f is the distance between the foci of a meridian 
section, s is the sum of the focal radii to the field point P, x or z is the distance from 
P to the equatorial plane, r is the distance from P to the rotational axis and U, is the 
external potential for the spheroid. The formulae given by Hopfner are 

for prolate spheroid 
( a 2 +  U)’/* 11 + 
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(2a)  
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c2+ U 
V, = ra’c 

for oblate spheroid 

where 1 is the semifocal distance, a is the semimajor axis, c is the semiminor axis, U 

is a positive root of the equation for confocal ellipsoids: 

2’ +-= 1 +- X 2  Y 2  
a ’ + ~  b 2 + u  c 2 + u  (3) 

in which b = c for prolate and a = 6 for oblate and V, is the external potential. The 
forms derived by MacMillan are expressed as 

( c2 + k)”2( x2  + y’) 
( c2 - a’)( a 2  + k )  

- rcra’c 

22‘ 
(c’- a’)( c’+ k)1’2 + m a ’ c  for prolate spheroid 

2rraa2c x2 + y 2 -  2z2 ( C’ + k)1’2(x2 + y’)  
( a 2  - c’) ( a 2  + k )  ( , 2  - c2)1/’ 

V =  

2z2 
(a ’ -  c2) (c2+ k)’” 

- mra2c  for oblate spheroid 

where cr is the mass density, c and a are the semimajor and semiminor axes for prolate, 
a and c are the semimajor and semiminor axes for oblate, k is the same as U in ( 2 a )  
and ( 2 b )  and V is the external potential. In the former two sets of expressions, the x 
axis is the rotational axis for prolate, the z axis for oblate; in the latter set of expressions, 
the z axis is always the rotational axis for both. 

Substituting in ( l a )  and (16): 

M + E  (Sa)  

21+ f 

(x’ + y’) + r2  

2(a’+ u)1/’+ s 

in ( 2 a )  and ( 2 b ) :  

for prolate spheroid 

for oblate spheroid 

for both 
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and in ( 4 a )  and ( 4 b ) :  

M +$mra2c for both prolate and oblate spheroids ( 7 a )  
1 + ( c ’ - a 2 ) ’ / ’  for prolate spheroid ( 7 b )  

1 + (a2 - c’) for oblate spheroid (7c)  

1 + ( c2 + k)’12) ( c2 - a 2 )  ’ / 2  
+ sinh-’ - a 2 +  k 

for prolate spheroid In( (a’ + k)1’2  

1 
( c2 + k)’” 

tan-’ for oblate spheroid 

we can reconcile these three sets of expressions. 
In many cases, it would be more convenient and intuitive to express the potential 

for a spheroid in a spheroidal coordinate system rather than in a rectangular coordinate 
system in order to determine the equipotential surfaces. 

2. The spheroidal potential in a spheroidal coordinate system 

The evaluation of the potential can usually be written in the integral form: 

V =  111 d v l r  

where r is the distance from the interior point of a given body to the field point and 
dv is the volume element for a spheroid: 

do = 1 3 ( f 2 -  71’~) d6’ dq ’  d 4 ’  (9) 
in which 1 is the semifocal distance, 6’ is the spheroidal radial coordinate, q’ is the 
spheroidal angular coordinate and 4’ is the azimuthal angle. 

The ratio of 1 to r in the spheroidal coordinate system can be expanded in terms 
of the Legendre function of the first and second kind (Hobson 1931): 

1 “  - = 
r , = O  

(2n + l)P,(cos 6)Pfl(cos 6’)Qfl(cosh q)P,,(cosh 7’) 

x Q;(cosh q)P;(cosh 7’) cos m ( 4  - 4 ‘ )  

x = 1 sinh q sin 6 cos 4 

for q > q‘ (10) 

(1 l a )  

where the relations of coordinates between rectangular and spheroidal systems are 

y = 1 sinh q sin 6 sin 4 
z = 1 cosh q COS 6. 

By defining the new spheroidal coordinates 6, r ] ,  4 instead of q, 6, in ( l l a ) ,  

x = l (6’ -  1) ’ / 2 (  1 - $ ) I ”  cos 4 (12a) 
y = l(6’- I)’’~( 1 - q2)’ l2  sin 4 (126) 

z = 167 (12c) 

(1 1 b )  and (1 1 c)  in such a way that 
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then (10) is converted to 

The substitution of (13) in (8) leads to 

The integral of the second part in (13) over the spheroid vanishes because 

cos[m(+-+’)] d+’=O 

The integral in (14) is composed of the following two parts: 

for m f 0. Jo2= 

V2= - 2 ~ 1 ’  f Q n ( 5 P n ( r l )  j+’ I 1 ‘ O  T’2(2n+l)Pn(5’)Pn(r’) d5’drl’ (16b) 
n=O - 1  

where to is the value of the radial coordinate on the surface of the spheroid. With the 
help of the property of orthogonality for two associated Legendre functions: 

we can calculate the integrals in (16a) and (16b); after simplification procedures, they 
come out to be 

Vl = W2Q0(5)(G - 1 )  (18a) 

v2= -~.irIZQ2(5)P2(rl)50(5i- 1 ) - W 2 Q 0 ( 5 ) ( 5 o -  1 ) .  (18b) 

v =  Vl+ V2=[4TI25o(5i- 1)1(90(5)- Q2(5)P2(7?)). (19) 

M =$vac2=$r(150)[I(5i- 1)1/2]2=$r1350(5i- 1 )  (20) 

So we find that 

The mass of the prolate spheroid is 

where we had used the unit mass density in the integral of potential in (8). Thus, (19) 
becomes 

v =  ( M / I ) ( Q o ( 5 ) -  Q2(5)P*(a)) for prolate spheroid (21) 

Q O ( 5 )  = t  In((&+ 1)/(5-- 1 ) )  (22a) 

where the Legendre function of the second kind, Qo(5), is evaluated by 

and to is given by 
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For oblate spheroid, replacing 5 by it and 1 by -il we can obtain 

v =  ( iM/NQo(i t )  - Q2(i t )P*(v) )  (23 )  

where 

Qo(it) = ; ln ( ( i t+ l ) / ( i t -  1)) =i(tan-' 5 - 4 ~ )  
and to is given by 

to= c / ( a 2 - c 2 ) ' / 2 .  

3. Numerical results 

The comparison between the expressions of potentials for prolate and oblate spheroids 
in spheroidal and rectangular coordinate systems can be performed by certain calcula- 
tions. 

For prolate spheroid, assume 1 = 25 and to = $; suppose the spheroidal coordinates 
of the field point P to be 

( = U  5 ( 2 5 a )  

77 = 0.6 ( 2 5 b )  

x = 3 9  ( 2 6 a )  

( y 2 +  z2) ' l2  = 48. (26b)  

from ( 2 a )  ( 2 7 a )  

V =  0.016 204 710 497. .  . from (21 ) .  (27b)  

then the corresponding rectangular coordinates will be 

Therefore, the potentials computed in two different expressions are 

V = 0.016 204 710 497. . . 
and 

For oblate spheroid, assume 1 = 25 and to = $; suppose the spheroidal coordinates 
of P to be 

t=" 5 

q = 0.6 (28b)  

i.e. 

( ~ ~ + y * ) ~ ' * = 5 2  

z = 36. 

The potentials are 

V = 0.015 805 070 122..  . 
and 

V = 0.015 805 070 122. . . 

from ( 2 b )  

from (23 ) .  (30b)  

The computational results of potentials for both prolate and oblate spheroids in 
their own systems are the same as those in rectangular coordinate systems. 
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